Vectors¶
-
class
pyspark.mllib.linalg.
Vectors
[source]¶ Factory methods for working with vectors.
Notes
Dense vectors are simply represented as NumPy array objects, so there is no need to convert them for use in MLlib. For sparse vectors, the factory methods in this class create an MLlib-compatible type, or users can pass in SciPy’s scipy.sparse column vectors.
Methods
dense
(*elements)Create a dense vector of 64-bit floats from a Python list or numbers.
fromML
(vec)Convert a vector from the new mllib-local representation.
norm
(vector, p)Find norm of the given vector.
parse
(s)Parse a string representation back into the Vector.
sparse
(size, *args)Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index).
squared_distance
(v1, v2)Squared distance between two vectors.
stringify
(vector)Converts a vector into a string, which can be recognized by Vectors.parse().
zeros
(size)Methods Documentation
-
static
dense
(*elements: Union[float, bytes, numpy.ndarray, Iterable[float]]) → pyspark.mllib.linalg.DenseVector[source]¶ Create a dense vector of 64-bit floats from a Python list or numbers.
Examples
>>> Vectors.dense([1, 2, 3]) DenseVector([1.0, 2.0, 3.0]) >>> Vectors.dense(1.0, 2.0) DenseVector([1.0, 2.0])
-
static
fromML
(vec: pyspark.ml.linalg.DenseVector) → pyspark.mllib.linalg.DenseVector[source]¶ Convert a vector from the new mllib-local representation. This does NOT copy the data; it copies references.
New in version 2.0.0.
- Parameters
- Returns
-
static
norm
(vector: pyspark.mllib.linalg.Vector, p: NormType) → numpy.float64[source]¶ Find norm of the given vector.
-
static
parse
(s: str) → pyspark.mllib.linalg.Vector[source]¶ Parse a string representation back into the Vector.
Examples
>>> Vectors.parse('[2,1,2 ]') DenseVector([2.0, 1.0, 2.0]) >>> Vectors.parse(' ( 100, [0], [2])') SparseVector(100, {0: 2.0})
-
static
sparse
(size: int, *args: Union[bytes, Tuple[int, float], Iterable[float], Iterable[Tuple[int, float]], Dict[int, float]]) → pyspark.mllib.linalg.SparseVector[source]¶ Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index).
- Parameters
- sizeint
Size of the vector.
- args
Non-zero entries, as a dictionary, list of tuples, or two sorted lists containing indices and values.
Examples
>>> Vectors.sparse(4, {1: 1.0, 3: 5.5}) SparseVector(4, {1: 1.0, 3: 5.5}) >>> Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) SparseVector(4, {1: 1.0, 3: 5.5}) >>> Vectors.sparse(4, [1, 3], [1.0, 5.5]) SparseVector(4, {1: 1.0, 3: 5.5})
-
static
squared_distance
(v1: pyspark.mllib.linalg.Vector, v2: pyspark.mllib.linalg.Vector) → numpy.float64[source]¶ Squared distance between two vectors. a and b can be of type SparseVector, DenseVector, np.ndarray or array.array.
Examples
>>> a = Vectors.sparse(4, [(0, 1), (3, 4)]) >>> b = Vectors.dense([2, 5, 4, 1]) >>> a.squared_distance(b) 51.0
-
static
stringify
(vector: pyspark.mllib.linalg.Vector) → str[source]¶ Converts a vector into a string, which can be recognized by Vectors.parse().
Examples
>>> Vectors.stringify(Vectors.sparse(2, [1], [1.0])) '(2,[1],[1.0])' >>> Vectors.stringify(Vectors.dense([0.0, 1.0])) '[0.0,1.0]'
-
static
zeros
(size: int) → pyspark.mllib.linalg.DenseVector[source]¶
-
static