pyspark.sql.DataFrameWriter.parquet¶
-
DataFrameWriter.
parquet
(path: str, mode: Optional[str] = None, partitionBy: Union[str, List[str], None] = None, compression: Optional[str] = None) → None[source]¶ Saves the content of the
DataFrame
in Parquet format at the specified path.New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- pathstr
the path in any Hadoop supported file system
- modestr, optional
specifies the behavior of the save operation when data already exists.
append
: Append contents of thisDataFrame
to existing data.overwrite
: Overwrite existing data.ignore
: Silently ignore this operation if data already exists.error
orerrorifexists
(default case): Throw an exception if data already exists.
- partitionBystr or list, optional
names of partitioning columns
- Other Parameters
- Extra options
For the extra options, refer to Data Source Option for the version you use.
Examples
Write a DataFrame into a Parquet file and read it back.
>>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a Parquet file ... spark.createDataFrame( ... [{"age": 100, "name": "Hyukjin Kwon"}] ... ).write.parquet(d, mode="overwrite") ... ... # Read the Parquet file as a DataFrame. ... spark.read.format("parquet").load(d).show() +---+------------+ |age| name| +---+------------+ |100|Hyukjin Kwon| +---+------------+