LogisticRegressionModel#
- class pyspark.mllib.classification.LogisticRegressionModel(weights, intercept, numFeatures, numClasses)[source]#
Classification model trained using Multinomial/Binary Logistic Regression.
New in version 0.9.0.
- Parameters
- weights
pyspark.mllib.linalg.Vector
Weights computed for every feature.
- interceptfloat
Intercept computed for this model. (Only used in Binary Logistic Regression. In Multinomial Logistic Regression, the intercepts will not be a single value, so the intercepts will be part of the weights.)
- numFeaturesint
The dimension of the features.
- numClassesint
The number of possible outcomes for k classes classification problem in Multinomial Logistic Regression. By default, it is binary logistic regression so numClasses will be set to 2.
- weights
Examples
>>> from pyspark.mllib.linalg import SparseVector >>> data = [ ... LabeledPoint(0.0, [0.0, 1.0]), ... LabeledPoint(1.0, [1.0, 0.0]), ... ] >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data), iterations=10) >>> lrm.predict([1.0, 0.0]) 1 >>> lrm.predict([0.0, 1.0]) 0 >>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect() [1, 0] >>> lrm.clearThreshold() >>> lrm.predict([0.0, 1.0]) 0.279...
>>> sparse_data = [ ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})), ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})), ... LabeledPoint(1.0, SparseVector(2, {1: 2.0})) ... ] >>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=10) >>> lrm.predict(numpy.array([0.0, 1.0])) 1 >>> lrm.predict(numpy.array([1.0, 0.0])) 0 >>> lrm.predict(SparseVector(2, {1: 1.0})) 1 >>> lrm.predict(SparseVector(2, {0: 1.0})) 0 >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> lrm.save(sc, path) >>> sameModel = LogisticRegressionModel.load(sc, path) >>> sameModel.predict(numpy.array([0.0, 1.0])) 1 >>> sameModel.predict(SparseVector(2, {0: 1.0})) 0 >>> from shutil import rmtree >>> try: ... rmtree(path) ... except BaseException: ... pass >>> multi_class_data = [ ... LabeledPoint(0.0, [0.0, 1.0, 0.0]), ... LabeledPoint(1.0, [1.0, 0.0, 0.0]), ... LabeledPoint(2.0, [0.0, 0.0, 1.0]) ... ] >>> data = sc.parallelize(multi_class_data) >>> mcm = LogisticRegressionWithLBFGS.train(data, iterations=10, numClasses=3) >>> mcm.predict([0.0, 0.5, 0.0]) 0 >>> mcm.predict([0.8, 0.0, 0.0]) 1 >>> mcm.predict([0.0, 0.0, 0.3]) 2
Methods
Clears the threshold so that predict will output raw prediction scores.
load
(sc, path)Load a model from the given path.
predict
(x)Predict values for a single data point or an RDD of points using the model trained.
save
(sc, path)Save this model to the given path.
setThreshold
(value)Sets the threshold that separates positive predictions from negative predictions.
Attributes
Intercept computed for this model.
Number of possible outcomes for k classes classification problem in Multinomial Logistic Regression.
Dimension of the features.
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions.
Weights computed for every feature.
Methods Documentation
- clearThreshold()#
Clears the threshold so that predict will output raw prediction scores. It is used for binary classification only.
New in version 1.4.0.
- predict(x)[source]#
Predict values for a single data point or an RDD of points using the model trained.
New in version 0.9.0.
- setThreshold(value)#
Sets the threshold that separates positive predictions from negative predictions. An example with prediction score greater than or equal to this threshold is identified as a positive, and negative otherwise. It is used for binary classification only.
New in version 1.4.0.
Attributes Documentation
- intercept#
Intercept computed for this model.
New in version 1.0.0.
- numClasses#
Number of possible outcomes for k classes classification problem in Multinomial Logistic Regression.
New in version 1.4.0.
- numFeatures#
Dimension of the features.
New in version 1.4.0.
- threshold#
Returns the threshold (if any) used for converting raw prediction scores into 0/1 predictions. It is used for binary classification only.
New in version 1.4.0.
- weights#
Weights computed for every feature.
New in version 1.0.0.