pyspark.pandas.DataFrame.pct_change#
- DataFrame.pct_change(periods=1)[source]#
Percentage change between the current and a prior element.
Note
the current implementation of this API uses Spark’s Window without specifying partition specification. This leads to moving all data into a single partition in a single machine and could cause serious performance degradation. Avoid this method with very large datasets.
- Parameters
- periodsint, default 1
Periods to shift for forming percent change.
- Returns
- DataFrame
Examples
Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01.
>>> df = ps.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13
>>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876
You can set periods to shift for forming percent change
>>> df.pct_change(2) FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 NaN NaN NaN 1980-03-01 0.067912 0.073814 0.06883